С Днем рождения, первый в мире калькулятор! Кто изобрел калькулятор. История его развития Компьютеры как абак

05.12.2023 Софт для Windows

кто придумал калькулятор? и получил лучший ответ

Ответ от Пеганов Юрий™[гуру]
В 1623 году Вильгельм Шикард придумал «Считающие часы» - первый механический калькулятор, умевший выполнять четыре арифметических действия.
Считающими часами устройство было названо потому, что как и в настоящих часах работа механизма была основана на использовании звёздочек и шестерёнок. Практическое использование это изобретение нашло в руках друга Шикарда, философа и астронома Иоганна Кеплера.
За этим последовали машины Блеза Паскаля («Паскалина» , 1642 г.) и Готфрида Вильгельма Лейбница.
Примерно в 1820 году Charles Xavier Thomas создал первый удачный, серийно выпускаемый механический калькулятор - Арифмометр Томаса, который мог складывать, вычитать, умножать и делить. В основном, он был основан на работе Лейбница. Механические калькуляторы, считающие десятичные числа, использовались до 1970-х.
1930-е - 1960-е: настольные калькуляторы.
К 1900-у году ранние механические калькуляторы, кассовые аппараты и счётные машины были перепроектированы с использованием электрических двигателей с представлением положения переменной как позиции шестерни.
С 1930-х такие компании как Friden, Marchant и Monro начали выпускать настольные механические калькуляторы, которые могли складывать, вычитать, умножать и делить.
Словом «computer» (буквально - «вычислитель») называлась должность - это были люди, которые использовали калькуляторы для выполнения математических вычислений. В ходе Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей» , многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд.
В 1948 году появился Curta - небольшой механический калькулятор, который можно было держать в одной руке.
В 1950-х - 1960-х годах на западном рынке появилось несколько марок подобных устройств.
Первым полностью электронным настольным калькулятором был британский ANITA Мк. VII, который использовал дисплей на газоразрядных цифровых индикаторах и 177 миниатюрных тиратронов. В июне 1963 года Friden представил EC-130 с четырьмя функциями.
Он был полностью на транзисторах, имел 13-цифровое разрешение на 5-дюймовой электронно-лучевой трубке, и представлялся фирмой на рынке калькуляторов по цене 2200 $. В модель EC 132 были добавлены функция вычисления квадратного корня и обратные функции. В 1965 году Wang Laboratories произвёл LOCI-2, настольный калькулятор на транзисторах с 10 цифрами, который использовал дисплей на газоразрядных цифровых индикаторах и мог вычислять логарифмы.
В Советском Союзе в то время самым известным и распространённым калькулятором был механический арифмометр «Феликс» , выпускавшийся с 1929 по 1978 год на заводах в Курске (завод «Счетмаш») , Пензе и Москве.

Развитие новой отрасли на пике телевизионного бума

Мы привыкли пользоваться электронными калькуляторами и в личных, и в деловых целях. В 1964 г., когда Япония готовилась к Олимпийским играм в Токио, компания Sharp снова представила принципиально новый продукт - первый в мире полностью транзисторно-диодный электронный калькулятор.

Предложение молодых инженеров

Несколькими годами ранее, в 1960 г., продажи телевизоров и прочих изделий резко возросли до уровня, в 18 раз превышающего показатели 1950 года, - это поразительное достижение за десятилетний период. Некоторые молодые инженеры, работающие в компании около четырех или пяти лет, проанализировав передовые технологии, интенсивно занялись исследованием компьютерных и полупроводниковых технологий. Руководство приняло их предложения, и была учреждена новая исследовательская лаборатория.

Компьютеры как абак

По ряду причин компания оставила свои первоначальные цели по разработке крупных компьютеров и вместо этого решила разрабатывать компьютеры, которые мог бы использовать каждый, в любое время и в любом месте, простые, как абак.

Выполнение после ознакомления с истоками

Как и в ситуации с радиотехникой, разработка компьютеров представлялась группе разработчиков практически непреодолимой задачей. Но уже в 1964 г. компания Sharp представила первый в мире полностью транзисторно-диодный электронный настольный калькулятор CS-10A. Стоимость калькулятора составляла 535 000 иен.

Новая сенсация развязывает "войну электронных калькуляторов"

Первый полностью транзисторно-диодный электронный калькулятор был высококачественным изделием, который невозможно было перепутать с абаком. Скорость осуществления расчетов и бесшумная работа были сенсационными. Производители устремились в эту отрасль, где вскоре уже было 33 компании-изготовителя, предлагающих 210 различных моделей таких устройств. Эта жесткая конкуренция привела к так называемой "войне электронных калькуляторов."

Обслуживание как стартовая точка реорганизации

Успешная разработка полностью транзисторно-диодного электронного калькулятора послужила началом разработок компании Sharp в сфере полупроводников, ЖК-экранов, информационных систем и систем связи. В результате компания превратилась в комплексное предприятие по производству электронной техники. Жесткая конкуренция стимулировала разработку более недорогих, компактных и легких электронных калькуляторов и обеспечила интенсивное развитие электронных технологий.

В 1965 г. после ажиотажа Олимпийских игр японская экономика переживала кризис и спад. Рынок "трех священных сокровищ" и других изделий, стимулирующих развитие отрасли бытовых электрических и электронных устройств, стал насыщенным. Для последующего развития объема продаж и рынка электронных устройств компания оперативно приняла стратегию по преодолению данной ситуации.

"Стратегия 70" для укрепления сети сбыта

Новая "Стратегия 70" компании Sharp была направлена на укрепление и расширение существующей сети сбыта. Ее целью было укрепление сети к 1970 году через продажи в дочерних предприятиях (их объем сбыта должен был составить до 70% от общего объема продаж). Осуществлялись и отдельные операции, включая открытие новых магазинов (Операция A) и увеличение транзакций с крупными розничными торговцами (Операция B), благодаря чему цель "Стратегии 70" была достигнута к 1971 г.

Комплексный рост потребностей в цветном телевидении

В 1966 г. произошло неожиданно быстрое восстановление экономики, развеявшее мрачные настроения в деловых кругах Японии. Автомобилестроение, кондиционеры воздуха и цветные телевизоры стали "тремя китами экономики", в результате чего доходы компании Sharp увеличивались благодаря постоянному росту объемов продаж цветных телевизоров и созданию первых в отрасли микроволновых печей с поворотным столом.

Первый в мире электронный калькулятор на интегральных микросхемах

Исследования по миниатюризации калькуляторов путем замены транзисторов на интегральные микросхемы привели к созданию первого в мире электронного калькулятора на интегральных микросхемах (CS-31A). Масса, количество деталей и стоимость нового изделия составляли почти половину от характеристик первого калькулятора Sharp, представленного на рынок.

Калькулятор Лейбница

Первая счетная машина, позволявшая производить умножение и деление также легко, как сложение и вычитание, была изобретена в Германии в 1673 году Готфридом Вильгельмом Лейбницем (1646-1716), и называлась «Калькулятор Лейбница».

Идея создать такую машину у Вильгельма Лейбница появилась после знакомства с голландским астрономом и математиком Христианом Гюйгенсом. Видя нескончаемые вычисления, которые астроному приходилось производить, обрабатывая свои наблюдения, Лейбниц решил создать устройство, которое ускорило и облегчило бы эту работу.

Первое описание своей машины Лейбниц сделал в 1670 году. Через два года ученый составил новое эскизное описание, на основе которого в 1673 году построил действующее арифметическое устройство и продемонстрировал его в феврале 1673 года на заседании Лондонского Королевского общества. В заключение своего выступления он признал, что устройство не совершенно, и пообещал его улучшить.

В 1674 – 1676 годах Лейбниц провел большую работу по улучшению изобретения и привез в Лондон новый вариант калькулятора. Это была малоразрядная модель счетной машины, не пригодная для практического применения. И только в 1694 году Лейбниц сконструировал 12 разрядную модель. Впоследствии калькулятор несколько раз дорабатывался. Последний вариант был создан в 1710 году. По образцу двенадцатиразрядной счетной машины Лейбница в 1708 году профессор Вагнер и мастер Левин создали шестнадцатиразрядную счетную машину.

Как видно, работа над изобретением была длительной, но не непрерывной. Лейбниц одновременно трудился в самых разных областях науки. В 1695 году он писал: «Уже свыше двадцати лет назад французы и англичане видели мою счетную машину... с тех пор Ольденбург, Гюйгенс и Арно, сами или через своих друзей, побуждали меня издать описание этого искусного устройства, а я все откладывал это, потому что я сперва имел только маленькую модель этой машины, которая годится для демонстрации механику, но не для пользования. Теперь же с помощью собранных мною рабочих готова машина, позволяющая перемножать до двенадцати разрядов. Уже год, как я этого достиг, но рабочие еще при мне, чтобы можно было изготовить другие подобные машины, так как их требуют из разных мест».

Работа над калькулятором Лейбницу обошлась в 24 000 талеров. Для сравнения, годовая зарплата министра по тем временам составляла 1 – 2 тысячи талеров.

К сожалению, с полной уверенностью не об одной из сохранившихся моделей калькулятора Лейбница нельзя сказать, что она была создана именно автором. Из-за чего существует много предположений относительно изобретения Лейбница. Есть мнения, что ученый только высказал идею применения ступенчатого валика, или что он не создавал калькулятор целиком, а только демонстрировал работу отдельных механизмов устройства. Но, несмотря на все сомнения, можно точно утверждать, что идеи Лейбница надолго определили путь развития вычислительной техники.

Мы будем вести описание калькулятора Лейбница на основе одной из сохранившихся моделей, находящейся в музее в Ганновере. Она представляет собой ящик около метра длинной, 30 сантиметров шириной и около 25 сантиметров высотой.

Изначально, Лейбниц пытался лишь улучшить уже существующее устройство Паскаля , но вскоре он понял, что операция умножения и деления требуют принципиально нового решения, которое бы позволяло вводить множимое только один раз.

О своей машине Лейбниц писал: «Мне посчастливилось построить такую арифметическую машину, которая бесконечно отличается от машины Паскаля, так как моя машина дает возможность совершать умножение и деление над огромными числами мгновенно, притом не прибегая к последовательному сложению и вычитанию».

Это стало возможно, благодаря разработанному Лейбницем цилиндру, на боковой поверхности которого, параллельно образующей, располагались зубья различной длины. Этот цилиндр получил название «Ступенчатый валик».

К ступенчатому валику крепится зубчатая рейка. Эта рейка входит в сцепление с десятизубым колесом №1, к которому прикреплялся циферблат с цифрами от 0 до 10. Поворотом этого циферблата задается значение соответствующего разряда множимого.

Например, если второй разряд множимого равнялся 5, то циферблат, отвечающий за установку этого разряда, поворачивался в положение 5. В результате десятизубое колесо № 1, с помощью зубчатой рейки, так перемещало ступенчатый валик, что при повороте на 360 градусов он входит в зацеплении с десятизубым колесом № 2 только пятью наиболее длинными ребрами. Соответственно, десятизубое колесо №2 поворачивалось на пять частей полного оборота, на столько же поворачивался и связанный с ним цифровой диск, отображающий результирующее значение выполненной операции.

При следующем обороте валика на цифровой диск снова перенесется пятерка. Если цифровой диск совершал полный оборот, то результат переполнения переносился на следующий разряд.

Поворот ступенчатых валиков осуществлялся с помощью специальной ручки – главного приводного колеса.

Таким образом, при выполнении операции умножения не требовалось многократно вводить множимое, а достаточно вести его один раз и повернуть ручку главного приводного колеса столько раз, на сколько необходимо произвести умножение. Однако, если множитель будет велик, то операция умножения займет длительное время. Для решения этой проблемы Лейбниц использовал сдвиг множимого, т.е. отдельно происходило умножение на единицы, десятки, сотни и так далее множителя.

Для возможности сдвига множимого устройство было разделено на две части - подвижную и неподвижную. В неподвижной части размещался основной счетчик и ступенчатые валики устройства ввода множимого. Установочная часть устройства ввода множимого, вспомогательный счетчик и, главное, приводное колесо располагаются на подвижной части. Для сдвига восьмиразрядного множимого использовалось вспомогательное приводное колесо.

Так же для облегчения умножения и деления Лейбниц разработал вспомогательный счетчик, состоящий из трех частей.

Наружная часть вспомогательного счетчика - неподвижная. На ней нанесены числа от 0 до 9 для отсчета количества сложений множимого при произведении операции умножения. Между цифрами 0 и 9 расположен упор, предназначенный остановить вращение вспомогательного счетчика, когда штифт достигнет упора.

Средняя часть вспомогательного счетчика – подвижная, которая служит для отсчета количества сложений при умножении и вычитаний при делении. На ней имеется десять отверстий, напротив цифр внешней и внутренней частей счетчика, в которые вставляется штифт для ограничения вращения счетчика.

Внутренняя часть - неподвижная, которая служит для отчета количества вычитаний при выполнении операции деления. На ней нанесены цифры от 0 до 9 в обратном, относительно наружной части, порядке.

При полном повороте главного приводного колеса средняя часть вспомогательного счетчика поворачивается на одно деление. Если предварительно вставить штифт, например, в отверстие напротив цифры 4 внешней части вспомогательного счетчика, то после четырех оборотов главного приводного колеса этот штифт наткнется на неподвижный упор и остановит вращение главного приводного колеса.

Рассмотрим принцип работы калькулятора Лейбница на примере умножения 10456 на 472:

1. С помощью циферблатов вводится множимое (10456).

2. Устанавливается штифт в среднюю часть вспомогательного счетчика, напротив цифры 2, нанесенной на наружную часть вспомогательного счетчика.

3. Поворачивают главное приводное колесо по часовой стрелки, пока штифт, вставленный в вспомогательный счетчик, не упрется в упор (два поворота).

4. Сдвигается подвижная часть калькулятора Лейбница на одно деление влево, используя вспомогательное приводное колесо.

5. Устанавливается штифт в среднюю часть вспомогательного счетчика, напротив цифры, соответствующей количеству десяток множителя (7).

6. Поворачивается главное приводное колесо по часовой стрелки, пока штифт, вставленный в вспомогательный счетчик, не упрется в упор (семь поворотов).

7. Подвижная часть калькулятора Лейбница сдвигается еще на одно деление влево.

8. Устанавливается штифт в среднюю часть вспомогательного счетчика, напротив цифры, соответствующей количеству сотен множителя (4).

9. Поворачивают главное приводное колесо по часовой стрелки, пока штифт, вставленный в вспомогательный счетчик, не упрется в упор (четыре поворота).

10. Число, появившиеся в окошках отображения результата, – искомое произведение 10456 на 472 (10456 х 472 = 4 935 232).

При делении, сначала, в калькулятор Лейбница вводится делимое с помощью циферблатов, и один раз поворачивается главное приводное колесо по часовой стрелке. Затем, с помощью циферблатов вводится делитель, и главное приводное колесо начинает вращаться против часовой стрелки. При этом результат деления – это количество оборотов главного приводного колеса, а в окошках отображения результатов индицировался остаток от деления.

Если делимое много больше делителя, то для ускорения деления используют сдвиг делителя на необходимое количество разрядов влево с помощью вспомогательного приводного колеса. При этом, во время подсчета количества оборотов главного приводного колеса, необходимо учитывать сдвиг (один оборот главного приводного колеса при сдвиге подвижной части калькулятора Лейбница на одну позицию влево приравнивается к десяти оборотам главного приводного колеса).

Рассмотрим принцип работы калькулятора Лейбница на примере деления 863 на 64:

1. С помощью циферблатов вводим делимое (863).

2. Поворачиваем ручку главного приводного колеса по часовой стрелки один раз.

3. С помощью циферблатов вводим делитель (863).

4. Сдвигаем движущуюся часть калькулятора Лейбница на одну позицию влево с помощью вспомогательного приводного колеса.

5. Поворачиваем главное приводное колесо один раз против часовой стрелки и получаем первую часть результата деления - количество оборотов главного приводного колеса, умноженное на разрядность (положение подвижной части калькулятора). Для нашего случая - это 1х10. Таким образом, первая часть результата деления будет равна 10. В окошках результата отобразится остаток от первой операции деления (223).

6. Сдвигаем движущуюся часть калькулятора Лейбница на одну позицию вправо с помощью вспомогательного приводного колеса.

7. Поворачиваем главное приводное колесо против часовой стрелки до тех пор, пока остаток, отображающийся в окошках результата, не станет меньше делителя. Для нашего случая - это 3 оборота. Таким образом, вторая часть результата будет равна 3. Складываем обе части результата и получаем частное (результат деления) - 13. Остаток от деления отображается в окошках результата и составляет 31.

Сложение осуществляется следующим способом:

1. С помощью установки циферблатов в необходимое положение, вводится первое слагаемое

3. Вводится второе слагаемое по той же технологии, как и первое.

4. Еще раз поворачивается ручка главного приводного колеса.

5. В окне результата отображается результат сложения.

Для вычитания необходимо:

1. С помощью установки циферблатов в необходимое положение, вводится уменьшаемое.

2. Поворачивается ручка главного приводного колеса по часовой стрелки один раз.

3. С помощью циферблатов вводится вычитаемое.

4. Поворачивается ручка главного приводного колеса один раз против часовой стрелки.

5. В окне результата отображается результат вычитания.

Несмотря на то, что о машине Лейбница было известно в большинстве стран Европы, она не получила большого распространения из-за высокой себестоимости, сложности изготовления и ошибок, изредка возникающих при переносе разрядов переполнения. Но основные идеи - ступенчатый валик и сдвиг множителя, позволяющие работать с многоразрядными числами, оставили заметный след в истории развития вычислительной техники.

Идеи, изложенные Лейбницем, имели большое количество последователей. Так, в конце 18 века над усовершенствованием калькулятора работали Вагнер и механик Левин, а после смерти Лейбница – математик Тоблер. В 1710 году машину, аналогичную калькулятору Лейбница, построил Буркхардт. Усовершенствованием изобретения занимались и Кнутцен, и Мюллер, и другие выдающиеся ученые того времени.


Кратко о статье: История калькуляторов от кости бабуина до человека, способного сложить 100 однозначных чисел за 19 секунд.

Эволюция

Калькуляторы

Можете сосчитать в уме квадратный корень числа 932561? Современным миром правят цифры. Все - даже этот журнал, который вы держите в руках, создается с помощью многозначных расчетов. Педагоги до сих пор стараются научить детей быстрому счету в уме и в «столбик», пугая их тем, что жители благополучных западных стран якобы уже не способны сосчитать сдачу в супермаркете. Математика - гимнастика ума, но жизнь часто подсовывает нам расчеты, для решения которых вручную не хватит и двух жизней. Лень - двигатель прогресса, поэтому сразу после того, как древним людям перестало хватать пальцев на руках для подсчета отвоеванных у природы благ, они изобрели устройства, облегчающие вычислительные муки мозга. Мы знаем о таких приспособлениях кое-что интересное, и сейчас расскажем это вам.

Строго говоря, калькуляторы были изобретены сразу после того, как человек научился считать. Древнейший артефакт такого рода - «кость Ишанго», найденная в Конго (возраст - около двадцати тысяч лет). Это берцовая кость бабуина, покрытая засечками. Предполагается, что первые математические вычисления в истории человечества делали женщины, рассчитывавшие менструальный цикл по лунному календарю.

Простейший счет велся на пальцах, а когда их не хватало, использовались любые природные объекты, заменявшие цифру 10. Примерно пять тысяч лет назад в Вавилоне появилась счетная доска, известная ныне как абак (абакус). По полю с углублениями передвигались камушки (десятки). Вероятно, это был инструмент купцов. Изобретение оказалось очень живучим и продержалось до средневековья. Интересно, что вавилоняне использовали не десятеричную, а шестидесятеричную (она же двенадцатеричная - по числу фаланг на пальцах руки, не считая большого) систему исчисления. Отсюда пошло привычное для нас деление времени на отрезки по 60 секунд и минут, а также 360 градусов, на которые поделена окружность.

Плавающая точка, дифференциальные уравнения, число «пи» - все это было известно несколько тысяч лет назад. Но великие математики древности рассчитывали свои открытия в уме. Калькуляторы были инструментами инженеров, торговцев и сборщиков налогов. Для их нужд в Риме был создан первый в мире ручной абак - табличка с подвижными фишками.

Юпана, калькулятор майя. Ученые долго не могли понять предназначение этой маленькой «модели крепости» до тех пор, пока итальянский инженер Николино де Паскуале не установил, что так называемые «дикари» создали матрицу этого калькулятора с использованием последовательности Фибоначчи и системы исчисления с основанием 40 (а не 10, как в Старом Свете).

Логарифмическая линейка - главный инструмент инженера до восьмидесятых годов прошлого века - была изобретена в 1622 году. Ее действие основано на том, что умножение и деление чисел можно выполнить сложением и вычитанием их логарифмов. С помощью такой линейки можно выполнить очень сложные вычисления с точностью до 3-4 десятичных знаков. Первый полет человека в космос рассчитывался именно на таких линейках. В наше время логарифмическими линейками иногда оснащаются дорогие модели механических часов (на фото - Breitling Navitimer).

Не менее известна и «разностная машина» Чарльза Бэббиджа, фигурировавшая в одноименном романе Стерлинга и Гибсона. Она была спроектирована в 1822 году и, будучи построенной, могла бы вычислять многочлены с точностью до восемнадцати знаков после запятой.

Самым компактным в истории механическим калькулятором был «Курта» (1938). Он выпускался до 1970-х.

В центре - Альберто Кото Гарсиа (Испания), самый быстросчитающий человек в мире. Скорость вычислений его мозга составляет пять операций в секунду. Он может умножить в уме два восьмизначных числа за 56 секунд, сложить десять десятизначных чисел десять раз за 4 минуты 26 секунд и сложить сто однозначных чисел за 19 секунд. Сканирование мозга подобных «живых калькуляторов», проведенное в 2005 году, показало, что во время вычислений снабжение мозга кровью в шесть-семь раз превышает аналогичные показатели обычного человека.

В ХХI веке мы волей-неволей сталкиваемся с числами, денежными единицами и другими бытовыми вещами, требующими определенных расчетов. К счастью, почти всегда у нас под рукой оказывается калькулятор, который облегчает любой вычислительный процесс. Интересно узнать, когда был изобретен этот аппарат, и в каких отраслях, помимо повседневной жизни, его можно использовать.

Сложно представить современный мир, где все подсчеты делались бы не с помощью машин, а вручную. Сколько бы времени тратило человечество на разные вычислительные комбинации, которые не всегда можно разрешить с помощью всеми уже забытых счет. Хотелось бы остановиться на совсем нехитром, казалось бы, технологическом изобретении, как калькулятор. Этот предмет уже давно вошел в обиход человека, поэтому мы не придаем ему особого значения. Но мало кому известно, как появился этот аппарат в нашей жизни, и сколько лет понадобилось для того, чтобы он принял ту форму, к которой мы так привыкли.

Где, кем и когда был изобретен калькулятор

Традиционно прототипом калькулятора принято считать Антикитерейский механизм, который исследователи относят ко II веку до нашей эры. Предположительно греки и римляне использовали этот аппарат для того, чтобы вычислять передвижение небесных тел. Также с помощью механизма можно было складывать, вычитать и делить.

К еще одним, более поздним, прообразам калькулятора причисляют абак, используемый в Древнем Вавилоне, и слегка модернизированный его вариант – счеты, который был в обиходе на Руси с ХV века.

Блез Паскаль в 1643 году изобрел машину по суммированию, которая имела вид коробка с соединенными между друг другом шестеренками, проворачивающимися с помощью небольших колесиков. Каждая шестеренка отвечала одному десятичному разряду. После заданной математической комбинации ответ можно было увидеть в небольшом окошке. Так как механизм делал обороты только в одну сторону, то в основном проводились операции по сложению, хотя можно было и делать другие расчеты, но это занимало длительный процесс времени и требовало больших усилий.

Спустя 20 лет, математиком Готфридом Вильгельмом Лейбницем были внесены некоторые усовершенствования в изобретение Паскаля. Теперь калькулятор мог намного быстрее совершать процессы деления и умножения. Калькулятор Лейбница активно использовался до второй половины ХХ века.

После середины столетия началось действительно активное развитие и использование вычислительной техники. С 1961 года англичане запустили в производство калькулятор для масс ANITA MK VIII, у которого клавиатура состояла из чисел, а работал он газоразрядных ламп. Через несколько лет в США изобрели калькулятор, способный выполнять транзисторные операции, а также в этом же году в производство вышел механизм ВЕГА. С 1965 года фирма Wang Laboratories запустила Wang LOCI-2, с помощью которого можно было вычислять логорифмы. Еще через несколько лет в СССР появился калькулятор, способный заниматься трансцендентными функциями, а США запустила на массовый рынок калькулятор привычного нам размера HP 9100A.

В 1970 году всеми нам известные фирмы Canon и Sharp изобрели расчетный аппарат который весил 800 грамм, что уже намного больше напоминало современный аппарат. Однако изобретение карманного калькулятора причисляют компании Bomwar, выпустившую в 1971 году калькулятор 901B. По своему виду он очень напоминает модерные вычислительные машины.

Виды калькуляторов

1) Простейший. Используется для простых вычислительных операций. Подходит для повседневной жизни и для учебы в школе или в университете на нетехнических специальностях. Это небольшой по размеру аппарат, выполняющий минимальное количество функций.

2) Инженерный. Используется в сферах инженерии и науки, производит вычислительные операции различных уровней сложности. Применяется среди научных работников, инженеров, студентов технических специальностей. С помощью этого аппарата можно работать и с естественной, и с плавающей запятой, производить операции с дробями, возводить числа в квадрат, использовать логарифмы, а также некоторые модели поддерживают статистические расчеты.

3) Бухгалтерский. Используется в сфере профессиональных расчетов, включающие денежные обороты. Применяется среди бухгалтеров или же кассиров. Клавиатура имеет большее количество клавиш для расчета больших денежных сумм, содержит большее количество знаков, чем предыдущие модели.

4) Финансовый. Относится к подклассу инженерной расчетной техники. Используется для выполнения финансовых расчетов, а также содержат минимум математических функций вместе с операциями, используемыми в банковской или финансовой сферах.

5) Программируемый. По функциям напоминает инженерный калькулятор. Однако здесь еще есть возможность повторно прокручивать сложные операции при создании и исполнении программ пользователя.

6) Графический. У этого вида калькуляторов есть графический экран, благодаря которому можно работать с графиками функций и даже с некоторыми произвольными рисунками.

Итак, калькулятор – это аппарат, уже укоренившийся, как в повседневной жизни, так и в профильных отраслях. С помощью него можно производить разные по сложности операции, что заметно упрощает и делает комфортной любую работу, требующую расчетов. Это изобретение является полезной находкой для нашего времени, где расчеты, цифры и числа играют далеко не последнюю роль.